Basis Hung-yi Lee

Outline

- What is a basis for a subspace?
- Confirming that a set is a basis for a subspace

• Reference: Textbook 4.2

What is Basis?

• Let V be a nonzero subspace of Rⁿ. A basis B for V is a linearly independent generation set of V.

$$\{\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n\}$$
 is a basis for \mathcal{R}^n .

- 1. $\{\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n\}$ is independent
- 2. $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ generates \mathcal{R}^n .

$$\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$$
 is a basis for \mathcal{R}^2

$$\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right\}\left\{\begin{bmatrix}1\\3\end{bmatrix},\begin{bmatrix}-3\\1\end{bmatrix}\right\}\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\2\end{bmatrix}\right\} \quad \text{...... any two independent vectors form a basis for } \mathcal{R}^2$$

Basis

 The pivot columns of a matrix form a basis for its columns space.

pivot columns

Property

• (a) S is contained in Span S

Basis is always in its subspace

Span S'

- (b) If a finite set S' is contained in Span S, then Span S' is also contained in Span S
 - Because Span S is a subspace

 (c) For any vector z, Span S = Span SU{z} if and only if z belongs to the Span S

- 1. A basis is the smallest generation set.
- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
 - The number of vectors in a basis for a nonzero subspace V is called dimension of V (dim V).

 Any two bases of a subspace V contain the same number of vectors

Suppose $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_p\}$ are two bases of V.

Let $A = [\mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_k]$ and $B = [\mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_p]$.

Since $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ spans $V, \exists \mathbf{c}_i \in \mathcal{R}^k$ s.t. $A\mathbf{c}_i = \mathbf{w}_i$ for all i

$$\Rightarrow A[\mathbf{c}_1 \mathbf{c}_2 \cdots \mathbf{c}_p] = [\mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_p] \Rightarrow AC = B$$

Now Cx = 0 for some $x \in \mathcal{R}^p \implies ACx = Bx = 0$

B is independent vector set $\Rightarrow x = 0 \Rightarrow \mathbf{c}_1 \mathbf{c}_2 \cdots \mathbf{c}_p$ are independent $\mathbf{c}_i \in \mathcal{R}^k \Rightarrow p \leq k$

Reversing the roles of the two bases one has $k \le p \Rightarrow p = k$.

Every basis of \mathbb{R}^n has n vectors.

- The number of vectors in a basis for a subspace V is called the dimension of V, and is denoted dim V
 - The dimension of zero subspace is 0

Example

$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathcal{R}^4 : x_1 - 3x_2 + 5x_3 - 6x_4 = 0 \\ x_1 = 3x_2 - 5x_3 + 6x_4 \end{bmatrix}$$
 Find dim V dim V = 3

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_2 - 5x_3 + 6x_4 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Basis? Independent vector set that generates V

A basis is the smallest generation set.

If there is a generation set S for subspace V,

The size of basis for V is smaller than or equal to S.

Reduction Theorem

There is a basis containing in any generation set S.

S can be reduced to a basis for V by removing some vectors.

Theorem 1 – Reduction Theorem

所有的 generation set 心中都有一個 basis

S can be reduced to a basis for V by removing some vectors.

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is a generation set of subspace V

Subspace
$$V = Span S$$
 Let $A = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k].$
= $Col A$

The basis of Col A is the pivot columns of A Subset of S

Theorem 1 – Reduction Theorem

所有的 generation set 心中都有一個 basis

Subspace
$$V = Span S = Col A = Span$$
 $\left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \right\}$

$$S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 4 \\ 6 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 3 \\ 9 \end{bmatrix} \right\} G$$

Smallest generation set

Generation set

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k *independent* vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space

S can be extended to a basis by adding more vectors

Theorem 2 – Extension Theorem

Independent set: 我不是一個 basis 就是正在成為一個 basis

There is a subspace V

Given a independent vector set S (elements of S are in V)

If Span S = V, then S is a basis

If Span S \neq V, find v_1 in V, but not in Span S

 $S = S \cup \{v_1\}$ is still an independent set

If Span S = V, then S is a basis

If Span S \neq V, find v_2 in V, but not in Span S

 $S = S \cup \{v_2\}$ is still an independent set

You will find the basis in the end.

More from Theorems

A basis is the smallest generation set.

A vector set generates \mathcal{R}^m must contain at least m vectors.

 \mathcal{R}^m have a basis $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_m\}$

Because a basis is the smallest generation set

Any other generation set has at least *m* vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in \mathcal{R}^m contain at most m vectors.

Summary

雕塑 ... 主要是使用雕(通過減除材料來造型)及塑(通過疊加材料來造型)的方式 (from wiki)

Generation set

Same size

Basis

Independent vector set

Confirming that a set is a Basis

Intuitive Way

 Definition: A basis B for V is an <u>independent</u> generation set of V.

$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathcal{R}^3 : v_1 - v_2 + 2v_3 = 0 \right\} \quad \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
Is $\boldsymbol{\mathcal{C}}$ a basis of $\boldsymbol{\mathcal{V}}$?

Independent? yes

Generation set? difficult

$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$$
 generates V

Another way

Find a basis for V

 Given a subspace V, assume that we already know that dim V = k. Suppose S is a subset of V with k vectors

If S is independent S is basis

If S is a generation set S is basis

$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathcal{R}^3 : v_1 - v_2 + 2v_3 = 0 \right\} \quad \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

Dim V = 2 (parametric representation)

Is C a basis of V?

e is a subset of V with 2 vectors Independent? yes

Another way

Assume that $\dim V = k$. Suppose S is a subset of V with k vectors

If S is independent S is basis

By the extension theorem, we can add more vector into S to form a basis.

However, S already have k vectors, so it is already a basis.

If S is a generation set S is basis

By the reduction theorem, we can remove some vector from S to form a basis.

However, S already have k vectors, so it is already a basis.

Example

• Is \mathcal{B} a basis of V?

$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \in \mathcal{R}^4 : v_1 + v_2 + v_4 = 0 \right\} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} \right\}$$

Independent set in V? yes

Dim
$$V = ?$$
 3 \mathfrak{B} is a basis of V .

Example

• Is \mathcal{B} a basis of V = Span S?

 $\boldsymbol{\mathcal{B}}$ is a subset of V with 3 vectors

$$S = \left\{ \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\3\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} \right\} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\}$$

$$A = \begin{bmatrix} 1 & -1 & 3 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 2 & -1 & 1 & -1 \end{bmatrix} \longrightarrow R_A = \begin{bmatrix} 1 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 2/3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad dimA = 3$$

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \longrightarrow R_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} Independent \\ \longrightarrow \mathcal{B} \text{ is a basis of } V. \end{array}$$

